# >>>>>>>>>>>>> ELF FILE HEADER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
                # All numbers (except in names) are in base sixteen (hexadecimal)
                # 00 <- number of bytes listed so far
7F 45 4C 46     # 04 e_ident[EI_MAG]: ELF magic number
01              # 05 e_ident[EI_CLASS]: 1: 32-bit, 2: 64-bit
   01           # 06 e_ident[EI_DATA]: 1: little-endian, 2: big-endian
      01        # 07 e_ident[EI_VERSION]: ELF header version; must be 1
         00     # 08 e_ident[EI_OSABI]: Target OS ABI; should be 0

00              # 09 e_ident[EI_ABIVERSION]: ABI version; 0 is ok for Linux
   00 00 00     # 0C e_ident[EI_PAD]: unused, should be 0
00 00 00 00     # 10

02 00           # 12 e_type: object file type; 2: executable
      03 00     # 14 e_machine: instruction set architecture; 3: x86, 3E: amd64
01 00 00 00     # 18 e_version: ELF identification version; must be 1

54 80 04 08     # 1C e_entry: memory address of entry point (where process starts)
34 00 00 00     # 20 e_phoff: file offset where program headers begin

00 00 00 00     # 24 e_shoff: file offset where section headers begin
00 00 00 00     # 28 e_flags: 0 for x86

34 00           # 2A e_ehsize: size of this header (34: 32-bit, 40: 64-bit)
      20 00     # 2C e_phentsize: size of each program header (20: 32-bit, 38: 64-bit)
01 00           # 2E e_phnum: #program headers
      28 00     # 30 e_shentsize: size of each section header (28: 32-bit, 40: 64-bit)

00 00           # 32 e_shnum: #section headers
      00 00     # 34 e_shstrndx: index of section header containing section names

# >>>>>>>>>>>>> ELF PROGRAM HEADER <<<<<<<<<<<<<<<<<<<<<<<<

01 00 00 00     # 38 p_type: segment type; 1: loadable

00 00 00 00     # 3C p_offset: file offset where segment begins
00 80 04 08     # 40 p_vaddr: virtual address of segment in memory (x86: 08048000)
00 00 00 00     # 44 p_paddr: physical address of segment, unspecified by 386 supplement
D4 00 00 00     # 48 p_filesz: size in bytes of the segment in the file image ############

00 80 FB 77     # 4C p_memsz: size in bytes of the segment in memory; p_filesz <= p_memsz
07 00 00 00     # 50 p_flags: segment-dependent flags (1: X, 2: W, 4: R)

00 10 00 00     # 54 p_align: 1000 for x86

# >>>>>>>>>>>>> PROGRAM SEGMENT <<<<<<<<<<<<<

# DMQ compiler (build executable in memory then write it)
# ecx: 08048000 = Head
#      2 * Head = ibuf
#      4 * Head = obuf
#      80000000 > seg
#  al: char (there are short instructions like CMP al, imm8)
# ebx: acc
# esi: input pointer (address in memory)
# ebp: num chars available in ibuf
# edi: output pointer (output file byte count)
# edx: ediMax (edx is parameter count in syscall write)
                # INTENTION             INSTRUCTION         OPCODE          NOTE
# Init:
31 ED           # ebp = 0               xor r/m32, r32      31 /r           11 101 101
31 D2           # edx = 0               xor r/m32, r32      31 /r           11 010 010
31 FF           # edi = 0               xor r/m32, r32      31 /r           11 111 111
B9 00 80 04 08  # ecx = Head            mov r32, imm32      B8+rd id

# NUMBER:                            5F
39 FA           # cmp edx, edi          cmp r/m32, r32      39 /r           11 111 010
0F 4C D7        # mov edx, edi if <     cmovl r32, r/m32    0F 4C /r        11 010 111
BB 00 00 00 80  # ebx = 80000000        mov r32, imm32      B8+rd id

# BYTE:                              69
E8 2A 00 00 00  # call GetByte       6E call rel32          E8 cd

# Hash:
3C 23           # cmp al, '#'           cmp al, imm8        3C ib
75 09           # jump WHSPACE if != 72 jne rel8            75 cb
# Comment:                           72
E8 21 00 00 00  # call GetByte       77 call rel32          E8 cd
3C 0A           # cmp al, '\n'          cmp al, imm8        3C ib
75 F7           # jump Comment if != 7B jne rel8            75 cb

# WHSPACE:                           7B                     ASCII summary: \t\n #+-0:A
3C 20           # cmp al, ' '           cmp al, imm8        3C ib
7F 0A           # jump NUMERAL if >  7F jg rel8             7F cb
85 DB           # cmp ebx, 0            test r/m32, r32     85 /r           11 011 011
7C DC           # jump NUMBER if <   83 jl  rel8            7C cb
88 1C 8F        # [4*ecx+edi] = bl      mov r/m8, r8        88 /r   00 011 100  10 001 111
47              # edi++                 inc r32             40+rd
EB D6           # jump NUMBER        89 jmp rel8            EB cb

# NUMERAL:                           89
2C 30           # al -= '0'             sub al, imm8        2C ib
3C 0A           # cmp al, A             cmp al, imm8        3C ib
7C 02           # jump +2 if <          jl rel8             7C cb
2C 07           # al -= 'A' - '0' - A   sub al, imm8        2C ib
C1 E3 04        # ebx <<= 4             shl r/m32, imm8     C1 /4 ib        11 100 011
00 C3           # bl += al              add r/m8, r8        00 /r           11 000 011
EB D1           # jump BYTE          98 jmp rel8            EB cb

# GetByte:                           98
46              # esi++                 inc r32             40+rd
4D              # ebp--                 dec r32             48+rd
7F 1B           # jump Ret if >      9C jg rel8             7F cb
53 52           # push ebx, edx         push r32            50+rd       S: acc ediMax
31 DB           # ebx = 0 (stdin)       xor r/m32, r32      31 /r           11 011 011
8D 43 03        # eax = 3 (read)        lea r32, m          8D /r           01 000 011
D1 E1           # ecx <<= 1 (ibuf)      shl r/m32, 1        D1 /4           11 100 001
89 CA           # edx = ecx (count)     mov r/m32, r32      89 /r           11 001 010
CD 80           # syscall               int imm8            CD ib
85 C0           # cmp eax, 0            test r/m32, r32     85 /r           11 000 000
7C 21           # jump EXIT+1 if <   AD jl rel8             7C cb
5A              # pop edx               pop r32             58+rd       S: acc
7E 0A           # jump WRITE if <=   B0 jle rel8            7E cb
5B              # pop ebx               pop r32             58+rd       S:
89 CE           # esi = ecx             mov r/m32, r32      89 /r           11 001 110
89 C5           # ebp = eax             mov r/m32, r32      89 /r           11 000 101
D1 E9    # Ret: # ecx >>= 1 (Head)   B7 shr r/m32, 1        D1 /5           11 101 001
8A 06           # al = [esi]            mov r8, r/m8        8A /r           00 000 110
C3              # return                ret                 C3

# WRITE:                             BA
D1 E1           # ecx <<= 1 (obuf)      shl r/m32, 1        D1 /4           11 100 001
43              # ebx = 1 (stdout)      inc r32             40+rd
# Flush:        #                    BD
8D 43 03        # eax = ebx + 3 (write) lea r32, m          8D /r           01 000 011
CD 80           # syscall               int imm8            CD ib
85 C0           # cmp eax, 0            test r/m32, r32     85 /r           11 000 000
7C 08           # jump EXIT+1 if <   C6 jl rel8             7C cb
01 C1           # ecx += eax            add r/m32, r32      01 /r           11 000 001
29 C2           # edx -= eax            sub r/m32, r32      29 /r           11 000 010
7F F1           # jump Flush if >    CC jg rel8             7F cb
4B 4B           # ebx = -1              dec r32             48+rd
# EXIT+1:       #                    CE
43              # ebx++                 inc r32             40+rd
31 C0 40        # eax = 1 (exit)        xor r/m32, r32; inc 31 /r           11 000 000
CD 80           # syscall            D4 int imm8            CD ib