
These slides are intended for those familiar with graphs and graph coloring.
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Slide 1

Ordinarily a graph G is considered to be (properly) colored when each vertex
has one color, and the colors of neighboring vertices are distinct. The smallest
number of colors in such an assignment is χ(G). The usual goal when coloring

2



is to use few colors.
A simple algorithm that conserves colors is first-fit : vertices are arranged

in some order, and the algorithm assigns to each vertex the smallest posi-
tive integer not already assigned to some neighbor. It is easy to prove that
first-fit uses χ(G) colors when the vertices of G are ordered favorably. We
are concerned with the number χFF (G) of colors used by first-fit when the
vertices of G are presented in a worst order.

For example, the first-fit algorithm uses 2 colors on a path of 4 vertices
in the best case. However, 3 colors are required if the ends of the path are
presented first.
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Slide 2

First-fit may use arbitrarily many colors on bipartite graphs, and even on
trees. But it uses no more than 40 times the optimal number of colors on
interval graphs. This result of Kierstead is the first of its kind. (The history
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of the problem of first-fit coloring of interval graphs begins perhaps in the
late 1960s, but some of it is omitted here for the sake of brevity.) He and his
student Qin improved this to 26 or so.

A new approach involving a “column construction procedure” was intro-
duced by Pemmaraju, Raman, and Varadarajan for an upper bound of 10.
They nearly obtained 8, and this was completed by Brightwell, Kierstead,
and Trotter soon after; and by Narayanaswamy and Subhash Babu, whose
proof yields a certain improvement. I learned from Kevin Milans that a sim-
ilar advance was made recently, but I don’t recall whose it is. In any case,

the best upper bound remains 8 by the measure sup
int. graph G

χFF (G)

χ(G)
.
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Slide 3

Interval graphs, by the way, are defined as having for each vertex a real
interval; a pair of vertices is an edge if and only if the intervals meet. This is
a proper subclass of the class of graphs. For example, a cycle on 4 vertices
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is not an interval graph. In fact, interval graphs are chordal (also known as
triangulated), so are perfect. When G is perfect, χ(G) equals the number of
vertices in a largest complete subgraph of G.
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Slide 4

As in the case of a path on 4 vertices, a bad order of the vertices of graph G
may cause first-fit to use more than χ(G) colors. An algorithm that assigns
each vertex a color without regard to neighbors not yet presented (as first-fit
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does) is online. Kierstead and Trotter showed that every online algorithm
can be made to use asymptotically 3 times the optimal number of colors by
construction of a sequence of graphs with suitable vertex orders.

Some years before, Witsenhausen had found for the first-fit algorithm a
lower bound of 4. This was rediscovered by Chrobak and Ślusarek. Ślusarek
improved the bound to 4.45. A lower bound of 5 was discovered late in 2009.
Here are explained the ideas of the proof.

Slide 5

This slide, for example, proves a lower bound of 7/3. First observe that this
collection of intervals, seen as an interval graph G, has no complete subgraph
larger than a triangle. That is, χ(G) ≤ 3.

On the other hand, the intervals are arranged in levels to show that
χFF (G) ≥ 7. When vertices are presented in levels from bottom to top, the
vertices of level 1 all get color 1; vertices of level 2 all get color 2; and so
on. This follows from the facts that each level is an independent set; each
vertex of level k has when it is colored a neighbor of each color 1, . . . , k − 1
(cf. Grundy coloring); and level 7 is occupied by a vertex.
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Slide 6

Such a construction, consisting of an interval graph and an assignment of
levels, can be imagined as a wall, where each brick is supported not according
to some physical condition, but to the Grundy condition.

There is a certain self-similarity in the given example. At the top are 4
intervals arranged in a pattern, beneath each of which are another 4. (Now
look at the cap from the bottom up.) At the bottom are 16 little walls each
of height 1 and largest clique size 1. In the middle are 4 walls each of height
4 and largest clique size 2. Third in the sequence is our wall of height 7 and
largest clique size 3.
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Slide 7

The sequence of walls (from the previous slide) approaches 3 in the ratio
χFF/χ. This is done by attaching beneath each of 4 intervals a copy of the
previous wall in the sequence. Each of those 4 intervals therefore meets (i.e.,
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is supported by) some other in every level below. In some cases the support
is local, which is to say by another of the 4; and in other cases the support
is distant, which is to say by an interval in a wall of prior generation.

The structure depicted here is a cap, which is essentially a wall with cones
standing for copies of older walls. From the top of each cone to the top of
the cap, at most 1 level in 3 is occupied by an interval. This makes the cap
suitable for producing a sequence of walls tending to 3 in the ratio χFF/χ.
Therefore it is called a 3-cap. Now our search turns from walls to caps.

Slide 8

Here is a 4-cap, where intervals now are represented by unit-height blocks.
At the top are twin unit blocks. (A cap should be nonempty.) Each can be
supported in the middle by a cone (representing an older wall). These cone
tops must be at least 4 units deeper than the top of the cap, so that above
them at most 1 level in 4 is occupied by an interval. No more distant support
is available for the twin unit blocks. There remains a gap of 2 levels where
local support is needed, so dual blocks are added to the cap under each unit
block. Now the twin unit blocks are supported, but the new block pairs at
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their sides still need support. (The cap has left-right symmetry. There will
be no further mention of the left side.)

A cone goes beneath the 2 blocks at 8 units below cap top. Left of (and
below) the 2 blocks (where there is only 1 unit block above), it is possible to
introduce a sole left supporter plus another cone at the same depth. (Among
8 levels spanned by the green arrow above its cone, only 2 levels are occupied
by intervals.) Now there is a need for 3 right supporters, and the 2 are
properly supported. It remains to support the 3.

The 3 require 4 right supporters with a cone depth of 16, and those 4
get a sole left supporter as well as something new: only 4 right supporters.
So the cone beneath them is at depth 16, resulting in a smaller gap than
before. For right support it suffices to place another copy of what supported
the first group of 4: a sole supporter at depth 16. The construction ends
because the sequence of right supporters has an entry that does not exceed
its predecessor.
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Slide 9

After discovering a 4-cap, surely Witsenhausen, and later Chrobak and Ślusarek,
must have immediately sought a 5-cap in the same way. (Here is another
change in notation: a group of unit blocks is replaced by a single block with
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a number in the center.) It turns out that the sequence of right supporters
increases strictly. Consequently, there is no 5-cap like this. A cap must be
finite.

Slide 10

So one might try a ratio between 4 and 5, say 4.1, with block multiplicities
rational instead of integral. Of course, the number of vertices in a cap must
be an integer. This condition is easily met, as the numbers can be scaled
(by some common factor) up to integers. Let us keep in mind the notion of
scaling. It is important later in the construction.
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Slide 11

This method works only up to a target ratio of 4.48 or so.
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Slide 12

Some new idea is needed in order to reach a lower bound of 5. Kierstead and
Trotter proposed a fuller collection of supporting blocks in the cap. Why
should each left supporter be terminated immediately by a cone? Why can’t
each block in the cap potentially have a left supporter and a right one?

This idea turns out to be helpful, although the construction is more diffi-
cult. Each block must be supported down to the top of its cone, which is to
say that a gap (of levels) must be covered jointly by left and right supporters.
How should this gap be distributed between supporters so that ultimately
the cap contains a finite number of blocks? Also, which of the two supporters
of a given block should cover the higher levels?
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Slide 13

The present construction exploits the appearance in the cap of another kind
of self-similarity. Let P be a unit block at the top of the cap. Then its
right supporter PS (in the low position) along with all its descendants can
be regarded as solving the problem of supporting P , subject to a certain
constraint: some of those descendants have above them block P , which en-
larges by 1 all the cliques they represent; while block PS itself and its other
supporters do not have P above them.

Similarly, the left supporter PSS of PS along with its descendants solves
the problem of supporting PS, subject to the constraint that PSS itself and
some of its supporters have only 1 unit above, while the others have PS
above, which is larger than 1 (when, as in our case, the target ratio exceeds
4). So PSS is like PS reversed left to right.
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Slide 14

We wish to propagate partial solutions from the PS position (here labeled
“key block”) to the PSS position. In a partial solution, the bottom of the
key block is at the top of the cone beneath block P (where it should be), but
the top of the key block is allowed to be lower than is needed to cover the
gap of P .
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Slide 15

A partial solution will be improved by a tiny increment δ. Progress toward
a complete solution is measured by the height θ of the key block in the best
known partial solution. If ever θ reaches r − 2, where r is the target ratio
(say r = 4.9), then the partial solution is complete, which is to say that an
r-cap exists.

Where before there were sole left-supporting blocks immediately termi-
nated by caps, now there are scaled copies of the best-known solution θ. The
scale for each such copy is uniquely determined and may differ from scales of
other copies. As before, each right supporter is determined to be whatever
is needed to cover the remaining gap.
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Slide 16

No 5-cap of this type exists, but we can get arbitrarily near 5.
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Slide 17

For example, here is how a 4.1-cap is obtained under the new procedure. The
initial partial solution is θ = 1; in this case the key block can be supported
immediately by a cone. (If r were 3, then this would be a complete solution,
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the one with a cap of 4 intervals from many slides ago.)
We attempt an improvement of δ = 0.1. (This is an arbitrary choice.)

So the key block has height 1.1, and the scale of its left supporter is 10%.
The remaining gap is 0.31, and such a block can be supported immediately
by a cone at this depth. The bid δ = 0.1 turns out to be modest enough for
success.

We bid more ambitiously (δ = 0.5) in the next step, and the sequence of
right supporters does not end so quickly. A 60%-scaled copy of the previous
solution goes under the key 1.6-block, leaving a gap of 1.8 for the right
supporter. Then a 20%-scaled copy of the previous solution goes under that,
leaving a gap of 1.26 ≤ 1.8. Such a block can be supported by a cone at this
depth. Even δ = 0.5 turns out to be modest enough, at least when r = 4.1
and θ = 1.1. After another iteration or so, the key block reaches size θ = 2.1,
so a 4.1-cap exists.
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Slide 18

One might wish to find a formula for the size of each block in a cap. Most
important is the sequence of right supporters; when its growth halts for some
δ > 0, even in a single entry, some progress can be made. However, perpetual
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progress is not sufficient for our purpose (say when δ = 1
2
, 1

4
, 1

8
, . . .).

It turns out that the sequence of right supporters satisfies a cubic linear
recurrence. Analysis of this recurring sequence reveals for which r and θ
one can advance from the initial partial solution (θ = 1) to a complete one
(θ ≥ r − 2). One can show that when r < 5, some uniform choice of δ > 0
suffices to reach the goal.
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Slide 19

It is well known that a linear recurring sequence is the sequence of coefficients
in the Taylor series of a rational function. Here are generating functions for
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the sequence of right supporters and its difference sequence, whose asymp-
totic behavior is crucial.

Each cap in the present construction is essentially a finite collection of
scaled instances of this sequence featuring one value of r (near 5) and many
values of θ ranging from 1 in the bottom (interior) of the cap to r− 2 at the
top (exterior).
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Slide 20

Such a cap is represented by open circles in this slide. The depicted curve
in the r, θ-plane is the boundary between sequence instances that increase
strictly (i.e., are bad) and those that are good for our construction. (Assume
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δ vanishes.) This is decided by comparing θ to 1
1−γ , where γ is the smallest

root of the characteristic polynomial of the recurrence relation (γ depends
on r and θ, but not δ).

The r-minimum point on that curve is precisely (r, θ, δ) = (5, 2, 0), known
as the Fibonacci sequence, which is of course strictly increasing (i.e., bad)
after the initial entries 1, 1. The Fibonacci sequence arises in our proof that
there is no 5-cap, as it happens. In the search for an r-cap with r < 5, it is
natural to consider sequences near the Fibonacci sequence. Who would have
thought though first to lift the recurrence from quadratic to cubic? And who
would have thought that the instances nearest the Fibonacci sequence belong
neither at the top nor bottom of the cap, but in the middle?
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